香港六合彩-澳门六合彩-时时彩

學術預告 首頁  >  學術科研  >  學術預告  >  正文

“兩校名師講堂”學術預告263—Mixed Finite Element Methods of Elasticity Problems
作者:     日期:2018-11-14     來源:    

講座主題:Mixed Finite Element Methods of Elasticity Problems

專家姓名:胡俊

工作單位:北京大學

講座時間:2018年11月16日17時0分

講座地點:數學學院340

主辦單位:煙臺大學數學與信息科學學院

內容摘要:

The problems that are most frequently solved in scientific and engineering computing may probably be the elasticity equations. The finite element method (FEM) was invented in analyzing the stress of the elastic structures in the 1950s. The mixed FEM within the Hellinger-Reissner (H-R) principle for elasticity yields a direct stress approximation since it takes both the stress and displacement as an independent variable. The mixed FEM can be free of locking for nearly incompressible materials, and be applied to plastic materials, and approximate both the equilibrium and traction boundary conditions more accurate. However, the symmetry of the stress plus the stability conditions make the design of the mixed FEM for elasticity surprisingly hard. In fact, ``Four decades of searching for mixed finite elements for elasticity beginning in the 1960s did not yield any stable elements with polynomial shape functions" [D. N. Arnold, Proceedings of the ICM, Vol. I : Plenary Lectures and Ceremonies (2002)]. Since the 1960s, many mathematicians have worked on this problem but compromised to weakly symmetric elements, or composite elements. In 2002, using the elasticity complexes, Arnold and Winther designed the first family of symmetric mixed elements with polynomial shape functions on triangular grids in 2D.

The talk presents a new framework to design and analyze the mixed FEM of elasticity problems, which yields optimal symmetric mixed FEMs. In addition, those elements are very easy to implement since their basis functions, based on those of the scalar Lagrange elements, can been explicitly written down by hand. The main ingredients of this framework are a structure of the discrete stress space on both simplicial and product grids, two basic algebraic results, and a two-step stability analysis method.

主講人介紹:

胡俊, 北京大學數學科學學院教授、黨委書記, 國家杰出青年基金獲得者。 主要從事非標準有限元方法,特別是彈性力學問題及相關問題的非標準有限元方法的構造、數值分析及自適應有限元方法等方面的研究。發表相關領域的論文60余篇,曾獲中國計算數學學會的“首屆青年創新獎”,全國百篇優秀博士學位論文和德國洪堡研究獎學金等榮譽。 現任三個國際期刊的編委和北京計算數學學會理事長。

百家乐官网投注很不错| 百家乐官网送现金200| 信誉博彩网| 百家乐官网翻天下载| 在线水果机游戏| 网上现金游戏网 | 星河百家乐官网的玩法技巧和规则| 大发888登不上| 澳门百家乐官网职业赌客| 什么事百家乐的路单| 棋牌室标语| 百家乐官网注册送免费金| 红桃K百家乐官网娱乐城| 威尼斯人娱乐场网站| 威尼斯人娱乐老品牌| 百家乐官网社区| 君怡百家乐的玩法技巧和规则 | 做生意风水 门对门| 百家乐官网桌子北京| 大发888玩的人多吗| 678百家乐官网博彩娱乐场开户注册| a8娱乐城官方网站| 菲律宾百家乐开户| 七乐百家乐官网现金网| 大发888网页版登陆| 百家乐官网赢家电子书| 大发888网页版免费| 太阳百家乐官网3d博彩通| 超级百家乐2龙虎斗| 百家乐官网技真人荷官| 博E百百家乐娱乐城| tt娱乐城网址| 皇马百家乐官网的玩法技巧和规则 | 百家乐官网破解版下载| 线上百家乐官网是如何作弊| 新奥博娱乐城体育投注| 百家乐投注软件有用吗| 百家乐官网如何写路| 百家乐号游戏机| 百家乐官网专业豪华版| 百家乐官网冯式打法|