香港六合彩-澳门六合彩-时时彩

學術預告 首頁  >  學術科研  >  學術預告  >  正文

“兩校名師講堂”學術預告263—Mixed Finite Element Methods of Elasticity Problems
作者:     日期:2018-11-14     來源:    

講座主題:Mixed Finite Element Methods of Elasticity Problems

專家姓名:胡俊

工作單位:北京大學

講座時間:2018年11月16日17時0分

講座地點:數學學院340

主辦單位:煙臺大學數學與信息科學學院

內容摘要:

The problems that are most frequently solved in scientific and engineering computing may probably be the elasticity equations. The finite element method (FEM) was invented in analyzing the stress of the elastic structures in the 1950s. The mixed FEM within the Hellinger-Reissner (H-R) principle for elasticity yields a direct stress approximation since it takes both the stress and displacement as an independent variable. The mixed FEM can be free of locking for nearly incompressible materials, and be applied to plastic materials, and approximate both the equilibrium and traction boundary conditions more accurate. However, the symmetry of the stress plus the stability conditions make the design of the mixed FEM for elasticity surprisingly hard. In fact, ``Four decades of searching for mixed finite elements for elasticity beginning in the 1960s did not yield any stable elements with polynomial shape functions" [D. N. Arnold, Proceedings of the ICM, Vol. I : Plenary Lectures and Ceremonies (2002)]. Since the 1960s, many mathematicians have worked on this problem but compromised to weakly symmetric elements, or composite elements. In 2002, using the elasticity complexes, Arnold and Winther designed the first family of symmetric mixed elements with polynomial shape functions on triangular grids in 2D.

The talk presents a new framework to design and analyze the mixed FEM of elasticity problems, which yields optimal symmetric mixed FEMs. In addition, those elements are very easy to implement since their basis functions, based on those of the scalar Lagrange elements, can been explicitly written down by hand. The main ingredients of this framework are a structure of the discrete stress space on both simplicial and product grids, two basic algebraic results, and a two-step stability analysis method.

主講人介紹:

胡俊, 北京大學數學科學學院教授、黨委書記, 國家杰出青年基金獲得者。 主要從事非標準有限元方法,特別是彈性力學問題及相關問題的非標準有限元方法的構造、數值分析及自適應有限元方法等方面的研究。發表相關領域的論文60余篇,曾獲中國計算數學學會的“首屆青年創新獎”,全國百篇優秀博士學位論文和德國洪堡研究獎學金等榮譽。 現任三個國際期刊的編委和北京計算數學學會理事長。

噢门百家乐官网注码技巧| 百家乐官网系统足球博彩通| 东方市| 百家乐投注注技巧| 百家乐暗红色桌布| 威尼斯人娱乐天上人间| 大发888娱乐城shouye| 国美百家乐官网的玩法技巧和规则 | 百家乐官网赌博技巧论坛| 百家乐官网电器维修| 明溪百家乐官网的玩法技巧和规则 | 网络百家乐官网游赌博| 做生意 风水| 菲律宾百家乐娱乐| 真博娱乐| 百家乐官网智能分析| 不夜城百家乐的玩法技巧和规则| 新世纪| 赌片百家乐官网的玩法技巧和规则| 太阳城公司| 百家乐官网视频地主| HG百家乐官网大转轮| 葡京百家乐的玩法技巧和规则 | 豪杰百家乐官网现金网| 做生意招财的东西| 百家乐棋牌游| 百家乐官网薯片| 百家乐都是什么人玩的| 百家乐官网娱乐注册就送| 网上赌百家乐官网有假| 威尼斯人娱乐平台最新地址| 百家乐官网算号软件| 鼎龙百家乐的玩法技巧和规则| gt百家乐官网平台| 百家乐网站排名| 真人百家乐官网代理合作| 大发888大发888| 百家乐官网开户导航| 大发888网页版官网| 百家乐官网视频游戏官网| 大发888娱乐城客服电话|