香港六合彩-澳门六合彩-时时彩

學術預告 首頁  >  學術科研  >  學術預告  >  正文

“兩校名師講堂”學術預告263—Mixed Finite Element Methods of Elasticity Problems
作者:     日期:2018-11-14     來源:    

講座主題:Mixed Finite Element Methods of Elasticity Problems

專家姓名:胡俊

工作單位:北京大學

講座時間:2018年11月16日17時0分

講座地點:數學學院340

主辦單位:煙臺大學數學與信息科學學院

內容摘要:

The problems that are most frequently solved in scientific and engineering computing may probably be the elasticity equations. The finite element method (FEM) was invented in analyzing the stress of the elastic structures in the 1950s. The mixed FEM within the Hellinger-Reissner (H-R) principle for elasticity yields a direct stress approximation since it takes both the stress and displacement as an independent variable. The mixed FEM can be free of locking for nearly incompressible materials, and be applied to plastic materials, and approximate both the equilibrium and traction boundary conditions more accurate. However, the symmetry of the stress plus the stability conditions make the design of the mixed FEM for elasticity surprisingly hard. In fact, ``Four decades of searching for mixed finite elements for elasticity beginning in the 1960s did not yield any stable elements with polynomial shape functions" [D. N. Arnold, Proceedings of the ICM, Vol. I : Plenary Lectures and Ceremonies (2002)]. Since the 1960s, many mathematicians have worked on this problem but compromised to weakly symmetric elements, or composite elements. In 2002, using the elasticity complexes, Arnold and Winther designed the first family of symmetric mixed elements with polynomial shape functions on triangular grids in 2D.

The talk presents a new framework to design and analyze the mixed FEM of elasticity problems, which yields optimal symmetric mixed FEMs. In addition, those elements are very easy to implement since their basis functions, based on those of the scalar Lagrange elements, can been explicitly written down by hand. The main ingredients of this framework are a structure of the discrete stress space on both simplicial and product grids, two basic algebraic results, and a two-step stability analysis method.

主講人介紹:

胡俊, 北京大學數學科學學院教授、黨委書記, 國家杰出青年基金獲得者。 主要從事非標準有限元方法,特別是彈性力學問題及相關問題的非標準有限元方法的構造、數值分析及自適應有限元方法等方面的研究。發表相關領域的論文60余篇,曾獲中國計算數學學會的“首屆青年創新獎”,全國百篇優秀博士學位論文和德國洪堡研究獎學金等榮譽。 現任三個國際期刊的編委和北京計算數學學會理事長。

娱乐场百家乐官网大都| 百家乐官网高手的心得| 娱网棋牌官方网站| 澳门百家乐官网游戏玩法| 机率游戏| 百家乐博彩软件| 成武县| 新世百家乐的玩法技巧和规则| 大世界百家乐官网娱乐城| 权威百家乐信誉网站| 百家乐官网最新庄闲投注法| 网上百家乐赌| 风水24山分房图| 百家乐官网代理占成| 贵族百家乐的玩法技巧和规则| 全迅网百家乐官网的玩法技巧和规则 | 在线百家乐官网博彩网| 亿酷棋牌世界 完整版官方免费下载| 百家乐棋牌公式| 广州百家乐官网赌场| a8娱乐城官方网站| 金樽百家乐的玩法技巧和规则| 百家乐官网牡丹娱乐城| 百家乐官网鸿泰棋牌| 世界杯赌球| 丽都百家乐的玩法技巧和规则| 游戏机百家乐官网的玩法技巧和规则| 玛多县| 德州扑克的玩法| 澳门百家乐有没有假| 送58百家乐官网的玩法技巧和规则 | 百家乐官网怎么出千| 皇冠国际现金投注网| 大发888 大发888娱乐城| 百家乐信誉好的平台| 百家乐官网试玩1000元| 百家乐官网怎么压对子| 皇冠网最新网址| 皇冠现金网址| 怎么赢百家乐的玩法技巧和规则| 豪华百家乐桌子厂家|