香港六合彩-澳门六合彩-时时彩

學術預告 首頁  >  學術科研  >  學術預告  >  正文

“慶祝建校四十年”系列學術活動之三元名家論壇:Safe Adaptive Control of Hyperbolic PDE-ODE Cascades
作者:     供圖:     供圖:     日期:2024-11-11     來源:    

講座主題:Safe Adaptive Control of Hyperbolic PDE-ODE Cascades

專家姓名:王驥

工作單位:廈門大學

講座時間:2024年11月12日10:00-10:40

講座地點:數學院大會議室341

主辦單位:煙臺大學數學與信息科學學院

內容摘要:

Adaptive safe control employing conventional continuous infinite-time adaptation requires that the initial conditions be restricted to a subset of the safe set due to parametric uncertainty, where the safe set is shrunk in inverse proportion to the adaptation gain. The recent regulation-triggered adaptive control approach with batch least-squares identification (BaLSI, pronounced ``ballsy'') completes perfect parameter identification in finite time and offers a previously unforeseen advantage in adaptive safe control. Since the true challenge of safe control is exhibited for CBF of a high relative degree, we undertake a safe BaLSI design for a class of systems that possess a particularly extreme relative degree: ODE-PDE-ODE sandwich systems. Such sandwich systems arise in various applications, including delivery UAVs (Unmanned Aerial Vehicles) with a cable-suspended load. Collision avoidance of the payload with the surrounding environment is required. The considered class of plants is coupled hyperbolic PDEs sandwiched by a strict-feedback nonlinear ODE and a linear ODE, where the unknown coefficients, whose bounds are known and arbitrary, are associated with the PDE in-domain coupling terms that can cause instability and with the input signal of the distal ODE. We introduce the concept of PDE CBF whose non-negativity as well as the ODE CBF's non-negativity are ensured with a backstepping-based safety filter. Our safe adaptive controller is explicit and operates in the entire original safe set. The designed controller guarantees: 1) the finite-time exact parameter identification of the unknown parameters; 2) the safety of the state furthermost from the control input; 3) the exponential regulation of the overall plant state to zero.

主講人介紹:

王驥,2018獲重慶大學機械工程博士學位,2019-2021加州大學圣地亞哥分校機械與航空工程系博士后。目前是廈門大學航空航天學院副教授,入選廈門大學“南強青年拔尖人才支持計劃”。主要從事分布參數系統邊界控制理論及其在柔性機械結構中的應用研究。以第一作者在控制領域頂刊IEEE TAC和 Automatica發表論文13篇(長文12篇),出版學術專著一部(Princeton University Press)。目前擔任Systems & Control Letters編委。

百家乐网站开户| 易发百家乐| 星级百家乐官网技巧| 百家乐官网赌马| 百家乐官网返点| 小孟百家乐官网的玩法技巧和规则| 肯博百家乐游戏| 真人百家乐对决| 大发888官方6222.| 西吉县| 永利博百家乐官网现金网| 天津太阳城橙翠园| 德州扑克| 百家乐官网波音平台有假吗| 喜达百家乐官网的玩法技巧和规则| 聚宝盆百家乐官网的玩法技巧和规则| 百家乐塑料扑克牌盒| 大发888娱乐城主页| 瑞丰| 百家乐官网超级市场| 百家乐小77论坛| 电脑版百家乐官网分析仪| 百家乐群dmwd| 澳门博彩 | 百家乐官网技巧开户网址| 鼎龙百家乐的玩法技巧和规则| 顶级赌场娱乐城| 百家乐官网娱乐城足球盘网| 澳门百家乐博彩网| 大发888游戏备用网址| 百家乐官网二代皇冠博彩| 百家乐tt娱乐平台| 澳门赌场美女| 百家乐官网破解的办法| 百家乐庄闲| 机率游戏| 粤港澳百家乐娱乐| 镇安县| 百家乐要怎么玩啊| 剑阁县| 威尼斯人娱乐城老牌|