香港六合彩-澳门六合彩-时时彩

學術預告 首頁  >  學術科研  >  學術預告  >  正文

“慶祝建校四十年”系列學術活動之三元名家論壇:Safe Adaptive Control of Hyperbolic PDE-ODE Cascades
作者:     供圖:     供圖:     日期:2024-11-11     來源:    

講座主題:Safe Adaptive Control of Hyperbolic PDE-ODE Cascades

專家姓名:王驥

工作單位:廈門大學

講座時間:2024年11月12日10:00-10:40

講座地點:數學院大會議室341

主辦單位:煙臺大學數學與信息科學學院

內容摘要:

Adaptive safe control employing conventional continuous infinite-time adaptation requires that the initial conditions be restricted to a subset of the safe set due to parametric uncertainty, where the safe set is shrunk in inverse proportion to the adaptation gain. The recent regulation-triggered adaptive control approach with batch least-squares identification (BaLSI, pronounced ``ballsy'') completes perfect parameter identification in finite time and offers a previously unforeseen advantage in adaptive safe control. Since the true challenge of safe control is exhibited for CBF of a high relative degree, we undertake a safe BaLSI design for a class of systems that possess a particularly extreme relative degree: ODE-PDE-ODE sandwich systems. Such sandwich systems arise in various applications, including delivery UAVs (Unmanned Aerial Vehicles) with a cable-suspended load. Collision avoidance of the payload with the surrounding environment is required. The considered class of plants is coupled hyperbolic PDEs sandwiched by a strict-feedback nonlinear ODE and a linear ODE, where the unknown coefficients, whose bounds are known and arbitrary, are associated with the PDE in-domain coupling terms that can cause instability and with the input signal of the distal ODE. We introduce the concept of PDE CBF whose non-negativity as well as the ODE CBF's non-negativity are ensured with a backstepping-based safety filter. Our safe adaptive controller is explicit and operates in the entire original safe set. The designed controller guarantees: 1) the finite-time exact parameter identification of the unknown parameters; 2) the safety of the state furthermost from the control input; 3) the exponential regulation of the overall plant state to zero.

主講人介紹:

王驥,2018獲重慶大學機械工程博士學位,2019-2021加州大學圣地亞哥分校機械與航空工程系博士后。目前是廈門大學航空航天學院副教授,入選廈門大學“南強青年拔尖人才支持計劃”。主要從事分布參數系統邊界控制理論及其在柔性機械結構中的應用研究。以第一作者在控制領域頂刊IEEE TAC和 Automatica發表論文13篇(長文12篇),出版學術專著一部(Princeton University Press)。目前擔任Systems & Control Letters編委。

盈丰娱乐| 百家乐官网推荐怎么看| 百家乐庄闲庄庄闲| 澳门金沙娱乐场| 百家乐高手看百家乐| 新澳博百家乐官网的玩法技巧和规则| 百家乐和的几率| 网上百家乐官网赌场| 威尼斯人娱乐代理| 神话百家乐官网的玩法技巧和规则 | 网络赌博平台| 赌博百家乐规则| 澳门百家乐官网娱乐城打不开| 新全讯网a3322.com| 百家乐官网java| 苗栗市| 新朝代百家乐开户网站| 电脑赌百家乐官网可靠吗| 拉斯维加斯国际娱乐| 单机百家乐的玩法技巧和规则| 无极县| 百家乐真人游戏赌场娱乐网规则| 威尼斯人娱乐城平台打不开| 博彩通百家乐概率| 嬴澳门百家乐官网的公式| 皇家国际娱乐| 大发888娱乐城菲律宾| 24山阴宅评凶吉| 澳门玩百家乐官网赢1000万 | 沙龙百家乐官网娱乐场开户注册| 线上百家乐怎么玩| 百家乐庄闲局部失衡| 新濠百家乐官网的玩法技巧和规则| 大石桥市| 亲朋棋牌手机版下载| 百家乐黏土筹码| 百家乐澳门规矩| 百家乐官网赌场详解| 百家乐官网隐者博客| 德州扑克书| 威尼斯人娱乐城代理注册|